標題:

數學知識交流---解二元方程(1)

發問:

(1) 解方程組 x + y = 10 x - y = 19 (2) 解方程組 2x - 3y = 6 7x - 15y = 3 (3) 解方程組 xy - 3x = 3 y^2 - x = 15 (4) 解方程組 x^2 + y^2 = 25 x + y = 1 請詳細說明答案。 更新: (3) corr. 解方程組 xy - 3x = 3 y^2 - x = 13

aa.jpg

 

此文章來自奇摩知識+如有不便請留言告知

最佳解答:

(1) 解方程組 x + y = 10 ------(1) x - y = 19 -------(2) 解: (1) + (2),得: 2x = 29 x = 14.5 (1) - (2),得: 2y = -9 y = -4.5 所以 x = 14.5, y = -4.5 (2) 解方程組 2x - 3y = 6 -------(1) 7x - 15y = 3 ------(2) 解: (1)×5 - (2),得: 3x = 27 x = 9 把x = 9代入(1),得: 2×9 - 3y = 6 3y = 12 y = 4 所以 x = 9, y = 4 (3) 解方程組 xy - 3x = 3 --------(1) y2 - x = 13 ---------(2) 由(2),得: x = y2 - 13 ---------(3) 把(3)代入(1),得: (y2 - 13) y = 3(y2 - 13) + 3 y3 - 13y = 3y2 - 36 y3 - 3y2 - 13y + 36 = 0 y3 - 4y2 + y2 - 4y - 9y + 36 = 0 y2 (y - 4) + y (y - 4) - 9 (y - 4) = 0 (y - 4)(y2 + y - 9) = 0 y = 4 或 y2 + y - 9 = 0 y2 + y - 9 = 0 y = (-1 - √37) / 2 或 y = (-1 + √37) / 2 所以原方程的解為: y1 = 4, y2 = (-1 - √37) / 2, y3 = (-1 + √37) / 2. (4) 解方程組 x2 + y2 = 25 ----------(1) x + y = 1 --------------(2) 解:(2)2,得: x2 + 2xy + y2 = 1 ---(3) (3) - (1),得: 2xy = -24 xy = -12 --------------(4) 由(2),得: x = 1 - y --------------(5) 把(5)代入(4),得: (1 - y) y = -12 y2 - y - 12 = 0 (y - 4)(y + 3) = 0 所以 y1 = 4, y2 = -3 2011-09-01 16:27:08 補充: 3. 當y1 = 4時,x1 = 42 - 13 = 3 當y2 = (-1 - √37) / 2時,x2 = [ (-1 - √37) / 2 ]2 - 13 = (√37 - 7) / 2 當y3 = (-1 + √37) / 2時,x3 = [ (-1 + √37) / 2 ]2 - 13 = (-√37 - 7) / 2. 4. 當y1 = 4時,x1 = 1 - 4 = -3 當y2 = -3時,x2 = 1 - (-3) = 4.

其他解答:

x^2 + y^2 = 25 x + y = 1 ____________ From2: x=1-y-------3 Sub 3 into 1: 1-2y+y^2+y^2=25 2y^2-2y-24=0 y^2-y-12=0 y^2 - y - 12 = 0 (y - 4)(y + 3) = 0 y=4,y=-3 __________
arrow
arrow
    創作者介紹
    創作者 rll33xb99t 的頭像
    rll33xb99t

    rll33xb99t的部落格

    rll33xb99t 發表在 痞客邦 留言(0) 人氣()