標題:
發問:
請詳細步驟教我計下題 : 圖片參考:https://s.yimg.com/rk/HA05788109/o/1491811603.jpg
最佳解答:
ai) d(n+2)/d(n)=0.8 when n=1, d(1+2)/d(1)=0.8 d(3)/16=0.8 d(3)=16(0.8)=12.8 when n=3, d(3+2)/d(3)=0.8 d(5)/12.8=0.8 d(5)=10.24 ii) d(n+2)/d(n)=0.8 when n=2, d(2+2)/d(2)=0.8 d(4)/10=0.8 d(4)=8 when n=4, d(4+2)/d(4)=0.8 d(6)/8=0.8 d(6)=6.4 bi) by d(n+2)/d(n)=0.8, when n is a odd number, d(1) , d(3) , d(5) , ... , d(2n-1) form a geometric sequence with r=0.8. d(1)+d(3)+d(5)+...+d(2n-1) =d(1)+d(2x2-1)+d(2x3-1)+...+d(2n-1) =0.8^(1-1) d(1) + 0.8^(2-1) d(1) + 0.8^(3-1) d(1) + ... + 0.8^(n-1) d(1) =d(1) + 0.8 d(1) + 0.8^(2) d(1) + ... + 0.8^(n-1) d(1) =16 + 0.8 x 16 + 0.8^(2) x 16 + ... + 0.8^(n-1) x 16 =16[1 - (0.8)^n]/(1-0.8) =80[1 - (0.8)^n] =80 - 80(0.8)^n ii) by d(n+2)/d(n)=0.8, when n is a even number, d(2) , d(4) , d(6) , ... , d(2n) form a geometric sequence with r=0.8. d(2)+d(4)+d(6)+...+d(2n) =d(2)+d(2x2)+d(2x3)+...+d(2n) =0.8^(1-1) d(2) + 0.8^(2-1) d(2) + 0.8^(3-1) d(2) + ... + 0.8^(n-1) d(2) =d(1) + 0.8 d(2) + 0.8^(2) d(2) + ... + 0.8^(n-1) d(2) =10 + 0.8 x 10 + 0.8^(2) x 10 + ... + 0.8^(n-1) x 10 =10[1 - (0.8)^n]/(1-0.8) =50[1 - (0.8)^n] =50 - 50(0.8)^n c) ∵when -1
其他解答:
此文章來自奇摩知識+如有不便請留言告知
急 ! F5 sequence #33發問:
請詳細步驟教我計下題 : 圖片參考:https://s.yimg.com/rk/HA05788109/o/1491811603.jpg
最佳解答:
ai) d(n+2)/d(n)=0.8 when n=1, d(1+2)/d(1)=0.8 d(3)/16=0.8 d(3)=16(0.8)=12.8 when n=3, d(3+2)/d(3)=0.8 d(5)/12.8=0.8 d(5)=10.24 ii) d(n+2)/d(n)=0.8 when n=2, d(2+2)/d(2)=0.8 d(4)/10=0.8 d(4)=8 when n=4, d(4+2)/d(4)=0.8 d(6)/8=0.8 d(6)=6.4 bi) by d(n+2)/d(n)=0.8, when n is a odd number, d(1) , d(3) , d(5) , ... , d(2n-1) form a geometric sequence with r=0.8. d(1)+d(3)+d(5)+...+d(2n-1) =d(1)+d(2x2-1)+d(2x3-1)+...+d(2n-1) =0.8^(1-1) d(1) + 0.8^(2-1) d(1) + 0.8^(3-1) d(1) + ... + 0.8^(n-1) d(1) =d(1) + 0.8 d(1) + 0.8^(2) d(1) + ... + 0.8^(n-1) d(1) =16 + 0.8 x 16 + 0.8^(2) x 16 + ... + 0.8^(n-1) x 16 =16[1 - (0.8)^n]/(1-0.8) =80[1 - (0.8)^n] =80 - 80(0.8)^n ii) by d(n+2)/d(n)=0.8, when n is a even number, d(2) , d(4) , d(6) , ... , d(2n) form a geometric sequence with r=0.8. d(2)+d(4)+d(6)+...+d(2n) =d(2)+d(2x2)+d(2x3)+...+d(2n) =0.8^(1-1) d(2) + 0.8^(2-1) d(2) + 0.8^(3-1) d(2) + ... + 0.8^(n-1) d(2) =d(1) + 0.8 d(2) + 0.8^(2) d(2) + ... + 0.8^(n-1) d(2) =10 + 0.8 x 10 + 0.8^(2) x 10 + ... + 0.8^(n-1) x 10 =10[1 - (0.8)^n]/(1-0.8) =50[1 - (0.8)^n] =50 - 50(0.8)^n c) ∵when -1
其他解答:
文章標籤
全站熱搜
留言列表